Please use this identifier to cite or link to this item: https://dora.health.qld.gov.au/qldresearchjspui/handle/1/6074
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVeerkamp, Kirsten-
dc.contributor.authorCarty, Christopher P.-
dc.contributor.authorWaterval, Niels F. J.-
dc.contributor.authorGeijtenbeek, Thomas-
dc.contributor.authorBuizer, Annemieke I.-
dc.contributor.authorLloyd, David G.-
dc.contributor.authorHarlaar, Jaap-
dc.contributor.authorvan der Krogt, Marjolein M.-
dc.date.accessioned2024-06-20T00:30:09Z-
dc.date.available2024-06-20T00:30:09Z-
dc.date.issued2023-
dc.identifier.citationJournal of Applied Biomechanics, 2023 (39) 5 p.334-346en
dc.identifier.urihttps://dora.health.qld.gov.au/qldresearchjspui/handle/1/6074-
dc.description.abstractSpasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.-
dc.titlePredicting Gait Patterns of Children With Spasticity by Simulating Hyperreflexia-
dc.identifier.doi10.1123/jab.2023-0022-
dc.relation.urlhttps://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,athens&db=ccm&AN=172805349&site=ehost-live-
dc.identifier.journaltitleJournal of Applied Biomechanics-
dc.identifier.risid4154-
dc.description.pages334-346-
dc.description.volume39-
dc.description.issue5-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Sites:Children's Health Queensland Publications
Show simple item record

Page view(s)

44
checked on Nov 25, 2024

Google ScholarTM

Check

Altmetric


Items in DORA are protected by copyright, with all rights reserved, unless otherwise indicated.