Please use this identifier to cite or link to this item: https://dora.health.qld.gov.au/qldresearchjspui/handle/1/5867
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIyer, K. K.-
dc.contributor.authorRoberts, J. A.-
dc.contributor.authorWaak, M.-
dc.contributor.authorVogrin, S. J.-
dc.contributor.authorKevat, A.-
dc.contributor.authorChawla, J.-
dc.contributor.authorHaataja, L. M.-
dc.contributor.authorLauronen, L.-
dc.contributor.authorVanhatalo, S.-
dc.contributor.authorStevenson, N. J.-
dc.date.accessioned2024-06-20T00:28:19Z-
dc.date.available2024-06-20T00:28:19Z-
dc.date.issued2023-
dc.identifier.citationbioRxiv, 2023 (Iyer K.K., Kartik.Iyer@qimrberghofer.edu.au; Roberts J.A.; Stevenson N.J., Nathan.Stevenson@qimrberghofer.edu.au) Brain Modeling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australiaen
dc.identifier.urihttps://dora.health.qld.gov.au/qldresearchjspui/handle/1/5867-
dc.description.abstractIn children, objective, quantitative tools that determine functional neurodevelopment are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely acquired electroencephalography (EEG) offer physiologically reliable measures of brain function. Here, we develop a novel measure of functional brain age (FBA) using a residual neural network based interpretation of the pediatric EEG. We show that the FBA from a 10 to 15 minute segment of 18-channel EEG during light sleep (stages 1 and 2) in typically developing children and adolescents was strongly associated with chronological age (R2 = 0.96, 95%CI: 0.94 - 0.96, n = 1062, age range: 1 month to 18 years). The mean absolute error (MAE) between FBA and age was 0.6 years (n = 1062), with an MAE of 2.1 years following validation on an independent set of EEG recordings (n = 723). The FBA detected group level maturational delays in a small cohort of children with abnormal neurodevelopment (p = 0.00053, n = 40). Our work offers a practical, scalable and powerful automated tool for tracking maturation of brain function throughout childhood with an accuracy comparable to that of widely used physical growth charts.-
dc.language.isoEnglish-
dc.titleA growth chart of brain function from infancy to adolescence based on electroencephalography-
dc.typePreprint-
dc.identifier.doi10.1101/2023.07.07.548062-
dc.relation.urlhttps://www.embase.com/search/results?subaction=viewrecord&id=L2026319962&from=export-
dc.relation.urlhttp://dx.doi.org/10.1101/2023.07.07.548062-
dc.identifier.journaltitlebioRxiv-
dc.identifier.risid4531-
dc.description.issue(Iyer K.K., Kartik.Iyer@qimrberghofer.edu.au; Roberts J.A.; Stevenson N.J., Nathan.Stevenson@qimrberghofer.edu.au) Brain Modeling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia-
item.languageiso639-1English-
item.openairetypePreprint-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Sites:Children's Health Queensland Publications
Show simple item record

Page view(s)

36
checked on Nov 27, 2024

Google ScholarTM

Check

Altmetric


Items in DORA are protected by copyright, with all rights reserved, unless otherwise indicated.