Please use this identifier to cite or link to this item:
https://dora.health.qld.gov.au/qldresearchjspui/handle/1/5060
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abascal, Federico | en |
dc.contributor.author | Bolanos, Noemi A. | en |
dc.contributor.author | Baber, Jonathan | en |
dc.contributor.author | Priestley, Peter | en |
dc.contributor.author | Dolman, M. Emmy M. | en |
dc.contributor.author | Fleuren, Emmy D. G. | en |
dc.contributor.author | Gauthier, Marie-Emilie | en |
dc.contributor.author | Mould, Emily V. A. | en |
dc.contributor.author | Gayevskiy, Velimir | en |
dc.contributor.author | Gifford, Andrew J. | en |
dc.contributor.author | Grebert-Wade, Dylan | en |
dc.contributor.author | Strong, Patrick A. | en |
dc.contributor.author | Manouvrier, Elodie | en |
dc.contributor.author | Warby, Meera | en |
dc.contributor.author | Thomas, David M. | en |
dc.contributor.author | Kirk, Judy | en |
dc.contributor.author | Tucker, Katherine | en |
dc.contributor.author | O'Brien, Tracey | en |
dc.contributor.author | Alvaro, Frank | en |
dc.contributor.author | McCowage, Geoffry B. | en |
dc.contributor.author | Dalla-Pozza, Luciano | en |
dc.contributor.author | Gottardo, Nicholas G. | en |
dc.contributor.author | Tapp, Heather | en |
dc.contributor.author | Wood, Paul | en |
dc.contributor.author | Khaw, Seong-Lin | en |
dc.contributor.author | Hansford, Jordan R. | en |
dc.contributor.author | Moore, Andrew | en |
dc.contributor.author | Norris, Murray D. | en |
dc.contributor.author | Trahair, Toby N. | en |
dc.contributor.author | Lock, Richard B. | en |
dc.contributor.author | Tyrrell, Vanessa | en |
dc.contributor.author | Haber, Michelle | en |
dc.contributor.author | Marshall, Glenn M. | en |
dc.contributor.author | Ziegler, David S. | en |
dc.contributor.author | Ekert, Paul G. | en |
dc.contributor.author | Cowley, Mark J. | en |
dc.contributor.author | Wong, Marie | en |
dc.contributor.author | Mayoh, Chelsea | en |
dc.contributor.author | Lau, Loretta M. S. | en |
dc.contributor.author | Khuong-Quang, Dong-Anh | en |
dc.contributor.author | Pinese, Mark | en |
dc.contributor.author | Kumar, Amit | en |
dc.contributor.author | Barahona, Paulette | en |
dc.contributor.author | Wilkie, Emilie E. | en |
dc.contributor.author | Sullivan, Patricia | en |
dc.contributor.author | Bowen-James, Rachel | en |
dc.contributor.author | Syed, Mustafa | en |
dc.contributor.author | Martincorena, Iñigo | en |
dc.contributor.author | Sherstyuk, Alexandra | en |
dc.date.accessioned | 2022-11-07T23:58:58Z | - |
dc.date.available | 2022-11-07T23:58:58Z | - |
dc.date.issued | 2020 | en |
dc.identifier.citation | 26, (11), 2020, p. 1742-1753 | en |
dc.identifier.other | RIS | en |
dc.identifier.uri | http://dora.health.qld.gov.au/qldresearchjspui/handle/1/5060 | - |
dc.description.abstract | The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.Gu, Z. et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat. Genet. 51, 296–307 (2019). (PMID: 306432496525306); Stewart, E. et al. Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic analyses. Cancer Cell 34, e419 (2018).; Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017). (PMID: 287268215905700); Pugh, T. J. et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 45, 279–284 (2013). (PMID: 233346663682833); Berger, M. F. & Mardis, E. R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 15, 353–365 (2018). (PMID: 295994766658089); Jones, D. T. W. et al. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat. Rev. Cancer 19, 420–438 (2019). (PMID: 31300807); Kurzrock, R. & Giles, F. J. Precision oncology for patients with advanced cancer: the challenges of malignant snowflakes. Cell Cycle 14, 2219–2221 (2015). (PMID: 260303374615125); Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018). (PMID: 294897555854542); Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018). (PMID: 29489754); Parsons, D. W. et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2, 616–624 (2016). (PMID: 268222375471125); Chang, W. et al. Multidimensional clinomics for precision therapy of children and adolescent young adults with relapsed and refractory cancer: a report from the center for cancer research. Clin. Cancer Res. 22, 3810–3820 (2016). (PMID: 269941454970946); Harttrampf, A. C. et al. Molecular screening for cancer treatment optimization (MOSCATO-01) in pediatric patients: a single-institutional prospective molecular stratification trial. Clin. Cancer Res. 23, 6101–6112 (2017). (PMID: 28733441); Khater, F. et al. Molecular profiling of hard-to-treat childhood and adolescent cancers. JAMA Netw. Open 2, e192906 (2019). (PMID: 310260316487576); Mody, R. J. et al. Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA 314, 913–925 (2015). (PMID: 263255604758114); Worst, B. C. et al. Next-generation personalised medicine for high-risk paediatric cancer patients - the INFORM pilot study. Eur. J. Cancer 65, 91–101 (2016). (PMID: 27479119); Allen, C. E. et al. Target and agent prioritization for the children’s oncology group-National Cancer Institute Pediatric MATCH trial. J. Natl Cancer Inst. 109, djw274 (2017). (PMID: 5963793); Parsons, D. W. et al. Identification of targetable molecular alterations in the NCI-COG Pediatric MATCH trial. J. Clin. Oncol. 37, 10011–10011 (2019).; Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019). (PMID: 316457656872491); Campbell, P. J., Getz, G., Stuart, J. M., Korbel, J. O. & Stein, L. D. -cancer analysis of whole genomes. Nature 578, 82–93 (2020).; Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). (PMID: 239455923776390); Campbell, B. B. et al. Comprehensive analysis of hypermutation in human cancer. C ll 171, e1010 (2017).; Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017). (PMID: 282881105833945); Vaske, O. M. et al. Comparative tumor RNA sequencing analysis for difficult-to-treat pediatric and young adult patients with cancer. JAMA Netw. Open 2, e1913968 (2019). (PMID: 316519656822083); McFarland, J. M. et al. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat. Commun. 9, 4610 (2018). (PMID: 303899206214982); Rodon, J. et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat. Med. 25, 751–758 (2019). (PMID: 310112056599610); Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018). (PMID: 60932186093218); Van Allen, E. M., Wagle, N. & Levy, M. A. Clinical analysis and interpretation of cancer genome data. J. Clin. Oncol. 31, 1825–1833 (2013). (PMID: 235895494878102); Hoskinson, D. C., Dubuc, A. M. & Mason-Suares, H. The current state of clinical interpretation of sequence variants. Curr. Opin. Genet. Dev. 42, 33–39 (2017). (PMID: 281575865446800); Griffith, M. et al. CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat. Genet. 49, 170–174 (2017). (PMID: 281381535367263); Drilon, A. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018). (PMID: 294661565857389); Ziegler, D. S. et al. Brief report: potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. Br. J. Cancer 119, 693–696 (2018). (PMID: 302207076173734); Bell, R. J. et al. Understanding TERT promoter mutations: a common path to immortality. Mol. Cancer Res. 14, 315–323 (2016). (PMID: 269414074852159); Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020). (PMID: 320250157054214); Jouhilahti, E. M. et al. The human PRD-like homeobox gene LEUTX has a central role in embryo genome activation. Development 143, 3459–3469 (2016). (PMID: 275787965087614); Gough, S. M., Slape, C. I. & Aplan, P. D. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 118, 6247–6257 (2011). (PMID: 219482993236115); Stathis, A. & Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov. 8, 24 (2018). (PMID: 29263030); Zimmerman, M. W. et al. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov. 8, 320–335 (2018). (PMID: 29284669); Cameron, D. L., et al. GRIDSS, PURPLE, LINX: unscrambling the tumor genome via integrated analysis of structural variation and copy number. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/781013v1 (2019).; Bailey, M. L. et al. Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition. Mol. Cancer Ther. 13, 724–732 (2014). (PMID: 24356817); Leung, J. W. et al. ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes Dev. 31, 260–274 (2017). (PMID: 282426255358723); Jones, D. T. W. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008). (PMID: 189741082577184); Kohashi, K. et al. Reclassification of rhabdoid tumor and pediatric undifferentiated/unclassified sarcoma with complete loss of SMARCB1/INI1 protein expression: three subtypes of rhabdoid tumor according to their histological features. Mod. Pathol. 29, 1232–1242 (2016). (PMID: 27338635); Donson, A. M. et al. Unique molecular characteristics of radiation-induced glioblastoma. J. Neuropathol. Exp. Neurol. 66, 740–749 (2007). (PMID: 17882018); Zhang, J., Nichols, K. E. & Downing, J. R. Germline mutations in predispositi n genes in pediatric cancer. N. Engl. J. Med. 374, 1391 (2016). (PMID: 27050224); Nielsen, M. et al. Survival of MUTYH-associated polyposis patients with colorectal cancer and matched control colorectal cancer patients. J. Natl Cancer Inst. 102, 1724–1730 (2010). (PMID: 210449662982808); Shlien, A. et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262 (2015). (PMID: 25642631); Wimmer, K. & Etzler, J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum. Genet. 124, 105–122 (2008). (PMID: 18709565); Haradhvala, N. J. et al. Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair. Nat. Commun. 9, 1746 (2018). (PMID: 297171185931517); Harris, M. H. et al. Multicenter feasibility study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the individualized cancer therapy (iCat) study. JAMA Oncol. 2, 608–615 (2016). (PMID: 26822149); Marks, L. J. et al. Precision medicine in children and young adults with hematologic malignancies and blood disorders: the Columbia University experience. Front. Pediatr. 5, 265 (2017). (PMID: 293129045732960); Pincez, T., et al. Feasibility and clinical integration of molecular profiling for target identification in pediatric solid tumors. Pediatr. Blood Cancer 64 https://doi.org/10.1002/pbc.26365 (2017).; Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017). (PMID: 2789966227899662); Fabregat, A. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016). (PMID: 26656494); Jassal, B. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020). (PMID: 31691815); Khaw, S. L. et al. Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia. Blood 128, 1382–1395 (2016). (PMID: 273432525016707); Villalobos-Ortiz, M., Ryan, J., Mashaka, T. N., Opferman, J. T. & Letai, A. BH3 profiling discriminates on-target small molecule BH3 mimetics from putative mimetics. Cell Death Differ. 27, 999–1007 (2019).; Blombery, P. et al. Characterization of a novel venetoclax resistance mutation (BCL2 Phe104Ile) observed in follicular lymphoma. Br. J. Haematol. 186, e188–e191 (2019). (PMID: 31234236); Guieze, R. et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. Cancer Cell 36, e313 (2019).; Lee, D. P., Skolnik, J. M. & Adamson, P. C. Pediatric phase I trials in oncology: an analysis of study conduct efficiency. J. Clin. Oncol. 23, 8431–8441 (2005). (PMID: 16293874); Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://arxiv.org/abs/1303.3997 (2013).; Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1–11.10.33 (2013).; Gayevskiy, V., Roscioli, T., Dinger, M. E. & Cowley, M. J. Seave: a comprehensive web platform for storing and interrogating human genomic variation. Bioinformatics 35, 122–125 (2019). (PMID: 30561546); McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016). (PMID: 272687954893825); Paila, U., Chapman, B. A., Kirchner, R. & Quinlan, A. R. GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comput. Biol. 9, e1003153 (2013). (PMID: 238741913715403); Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012). (PMID: 22581179); Pinese, M. et al. The medical genome reference bank contains whole genome and phenotype data of 2570 healthy elderly. Nat. Commun. 11, 435 (2020). (PMID: 319743486978518); Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31–31 (2016). (PMID: 268991704762164); Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).; Cameron, D. L. et al. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 27, 2050–2060 (2017). (PMID: 290974035741059); Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011). (PMID: 212210953346182); Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).; Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 2011027820110278); Craig, D. W. et al. A somatic reference standard for cancer genome sequencing. Sci. Rep. 6, 24607 (2016). (PMID: 270947644837349); Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, e524 (2019).; Cheng, J. et al. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol. 20, 48 (2019). (PMID: 308239016396468); Jian, X., Boerwinkle, E. & Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 42, 13534–13544 (2014). (PMID: 254168024267638); Signal, B., Gloss, B. S., Dinger, M. E. & Mercer, T. R. Machine learning annotation of human branchpoints. Bioinformatics 34, 920–927 (2018). (PMID: 29092009); Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015). (PMID: 25525159); Garrido-Martin, D., Palumbo, E., Guigo, R. & Breschi, A. ggsashimi: Sashimi plot revised for browser- and annotation-independent splicing visualization. PLoS Comput. Biol. 14, e1006360 (2018). (PMID: 301184756114895); Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016). (PMID: 275355335018207); Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). (PMID: 324616547334197); Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013). (PMID: 23201682); Fairley, S., Lowy-Gallego, E., Perry, E. & Flicek, P. The international genome sample resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 48, D941–D947 (2019). (PMID: 6943028); Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019). (PMID: 30371827); Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010). (PMID: 203545122855889); Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016). (PMID: 26633127); Choi, Y. & Chan, A. P. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747 (2015). (PMID: 45286274528627); Shihab, H. A. et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 34, 57–65 (2013). (PMID: 23033316); Kim, S., Jhong, J. H., Lee, J. & Koo, J. Y. Meta-analytic support vector machine for integrating multiple omics data. BioData Min. 10, 2 (2017). (PMID: 281493255270233); Dong, C. et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 2125–2137 (2015). (PMID: 25552646); Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Aci s Res. 47, D941–D947 (2019).; Sondka, Z. et al. The COSMIC cancer gene census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018). (PMID: 302930886450507); Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 23104886); Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010). (PMID: 206016852938201); Haas, B. J. et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 20, 213 (2019). (PMID: 316390296802306); Davidson, N. M., Majewski, I. J. & Oshlack, A. JAFFA: high sensitivity transcriptome-focused fusion gene detection. Genome Med. 7, 43 (2015). (PMID: 260197244445815); Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009). (PMID: 1909777419097774); O, J. H., Lodge, M. A. & Wahl, R. L. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology 280, 576–584 (2016). (PMID: 269096474976461); Wen, P. Y. et al. Response assessment in neuro-oncology clinical trials. J. Clin. Oncol. 35, 2439–2449 (2017). (PMID: 55164825516482). Linking ISSN: 10788956. Subset: MEDLINE; Date of Electronic Publication: 2020 Oct 05. Current Imprints: Publication: New York Ny : Nature Publishing Company; Original Imprints: Publication: New York, NY : Nature Pub. Co., [1995- <br /> | en |
dc.language.iso | en | en |
dc.relation.ispartof | Nature medicine | en |
dc.title | Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer | en |
dc.type | Article | en |
dc.identifier.doi | 10.1038/s41591-020-1072-4 | en |
dc.subject.keywords | Whole Genome Sequencing | en |
dc.subject.keywords | Child, Preschool | en |
dc.subject.keywords | DNA Methylation/genetics | en |
dc.subject.keywords | Female | en |
dc.subject.keywords | Humans | en |
dc.subject.keywords | Infant | en |
dc.subject.keywords | Male | en |
dc.subject.keywords | Mutation/genetics | en |
dc.subject.keywords | Neoplasms/classification | en |
dc.subject.keywords | Neoplasms/pathology | en |
dc.subject.keywords | Pediatrics | en |
dc.subject.keywords | Precision Medicine | en |
dc.subject.keywords | Risk Factors | en |
dc.subject.keywords | Whole Exome Sequencing | en |
dc.subject.keywords | Transcriptome/*genetics | en |
dc.subject.keywords | Adolescent | en |
dc.subject.keywords | Child | en |
dc.subject.keywords | Epigenome/*geneticsNeoplasm Proteins/*genetics | en |
dc.subject.keywords | Neoplasms/*genetics | en |
dc.relation.url | https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,athens&db=mdc&AN=33020650&site=ehost-live | en |
dc.identifier.risid | 3558 | en |
dc.description.pages | 1742-1753 | en |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
Appears in Sites: | Children's Health Queensland Publications |
Items in DORA are protected by copyright, with all rights reserved, unless otherwise indicated.