Please use this identifier to cite or link to this item:
https://dora.health.qld.gov.au/qldresearchjspui/handle/1/4179
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bernier-Jean, A. | en |
dc.contributor.author | Teixeira-Pinto, A. | en |
dc.contributor.author | Au, E. H. | en |
dc.contributor.author | Francis, A. | en |
dc.date.accessioned | 2022-11-07T23:50:08Z | - |
dc.date.available | 2022-11-07T23:50:08Z | - |
dc.date.issued | 2020 | en |
dc.identifier.citation | 97, (5), 2020, p. 877-884 | en |
dc.identifier.other | RIS | en |
dc.identifier.uri | http://dora.health.qld.gov.au/qldresearchjspui/handle/1/4179 | - |
dc.description.abstract | Risk prediction models are statistical models that estimate the probability of individuals having a certain disease or clinical outcome based on a range of characteristics, and they can be used in clinical practice to stratify disease severity and characterize the risk of disease or disease prognosis. With technological advancements and the proliferation of clinical and biological data, prediction models are increasingly being developed in many areas of nephrology practice. This article guides the reader through the process of creating a prediction model, including (i) defining the clinical question and type of model, (ii) data collection and data cleaning, (iii) model building and variable selection, (iv) model performance, (v) model validation, (vi) model presentation and reporting, and (vii) impact evaluation. An example of developing a prediction model to predict mortality after intensive care unit admission for patients with end-stage kidney disease is also provided to illustrate the model development process.L20054515632020-04-10 <br />2020-04-20 <br /> | en |
dc.language.iso | en | en |
dc.relation.ispartof | Kidney International | en |
dc.title | Prediction modeling—part 1: regression modeling | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.kint.2020.02.007 | en |
dc.subject.keywords | human | en |
dc.subject.keywords | information processing | en |
dc.subject.keywords | intensive care unit | en |
dc.subject.keywords | mortality risk | en |
dc.subject.keywords | pneumonia | en |
dc.subject.keywords | prediction | en |
dc.subject.keywords | priority journal | en |
dc.subject.keywords | probability | en |
dc.subject.keywords | prognosis | en |
dc.subject.keywords | disease severity | en |
dc.subject.keywords | reliability | en |
dc.subject.keywords | review | en |
dc.subject.keywords | risk assessment | en |
dc.subject.keywords | statistical analysis | en |
dc.subject.keywords | statistical model | en |
dc.subject.keywords | clinical practicedata analysis | en |
dc.subject.keywords | regression analysis | en |
dc.subject.keywords | end stage renal disease | en |
dc.subject.keywords | hemodialysis | en |
dc.subject.keywords | hospital admission | en |
dc.relation.url | https://www.embase.com/search/results?subaction=viewrecord&id=L2005451563&from=exporthttp://dx.doi.org/10.1016/j.kint.2020.02.007 | | en |
dc.identifier.risid | 1603 | en |
dc.description.pages | 877-884 | en |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
Appears in Sites: | Children's Health Queensland Publications |
Items in DORA are protected by copyright, with all rights reserved, unless otherwise indicated.