Please use this identifier to cite or link to this item: https://dora.health.qld.gov.au/qldresearchjspui/handle/1/4179
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBernier-Jean, A.en
dc.contributor.authorTeixeira-Pinto, A.en
dc.contributor.authorAu, E. H.en
dc.contributor.authorFrancis, A.en
dc.date.accessioned2022-11-07T23:50:08Z-
dc.date.available2022-11-07T23:50:08Z-
dc.date.issued2020en
dc.identifier.citation97, (5), 2020, p. 877-884en
dc.identifier.otherRISen
dc.identifier.urihttp://dora.health.qld.gov.au/qldresearchjspui/handle/1/4179-
dc.description.abstractRisk prediction models are statistical models that estimate the probability of individuals having a certain disease or clinical outcome based on a range of characteristics, and they can be used in clinical practice to stratify disease severity and characterize the risk of disease or disease prognosis. With technological advancements and the proliferation of clinical and biological data, prediction models are increasingly being developed in many areas of nephrology practice. This article guides the reader through the process of creating a prediction model, including (i) defining the clinical question and type of model, (ii) data collection and data cleaning, (iii) model building and variable selection, (iv) model performance, (v) model validation, (vi) model presentation and reporting, and (vii) impact evaluation. An example of developing a prediction model to predict mortality after intensive care unit admission for patients with end-stage kidney disease is also provided to illustrate the model development process.L20054515632020-04-10 <br />2020-04-20 <br />en
dc.language.isoenen
dc.relation.ispartofKidney Internationalen
dc.titlePrediction modeling—part 1: regression modelingen
dc.typeArticleen
dc.identifier.doi10.1016/j.kint.2020.02.007en
dc.subject.keywordshumanen
dc.subject.keywordsinformation processingen
dc.subject.keywordsintensive care uniten
dc.subject.keywordsmortality risken
dc.subject.keywordspneumoniaen
dc.subject.keywordspredictionen
dc.subject.keywordspriority journalen
dc.subject.keywordsprobabilityen
dc.subject.keywordsprognosisen
dc.subject.keywordsdisease severityen
dc.subject.keywordsreliabilityen
dc.subject.keywordsreviewen
dc.subject.keywordsrisk assessmenten
dc.subject.keywordsstatistical analysisen
dc.subject.keywordsstatistical modelen
dc.subject.keywordsclinical practicedata analysisen
dc.subject.keywordsregression analysisen
dc.subject.keywordsend stage renal diseaseen
dc.subject.keywordshemodialysisen
dc.subject.keywordshospital admissionen
dc.relation.urlhttps://www.embase.com/search/results?subaction=viewrecord&id=L2005451563&from=exporthttp://dx.doi.org/10.1016/j.kint.2020.02.007 |en
dc.identifier.risid1603en
dc.description.pages877-884en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Sites:Children's Health Queensland Publications
Show simple item record

Page view(s)

60
checked on Feb 14, 2025

Google ScholarTM

Check

Altmetric


Items in DORA are protected by copyright, with all rights reserved, unless otherwise indicated.