Please use this identifier to cite or link to this item: https://dora.health.qld.gov.au/qldresearchjspui/handle/1/3675
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWhiley, David M.en
dc.contributor.authorPaterson, David L.en
dc.contributor.authorSchembri, Mark A.en
dc.contributor.authorBeatson, Scott A.en
dc.contributor.authorMurigneux, Valentineen
dc.contributor.authorRoberts, Leah W.en
dc.contributor.authorForde, Brian M.en
dc.contributor.authorPhan, Minh-Duyen
dc.contributor.authorNhu, Nguyen Thi Khanhen
dc.contributor.authorIrwin, Adamen
dc.contributor.authorHarris, Patrick N. A.en
dc.date.accessioned2022-11-07T23:44:56Z-
dc.date.available2022-11-07T23:44:56Z-
dc.date.issued2021en
dc.identifier.citation22, (1), 2021, p. 474en
dc.identifier.otherRISen
dc.identifier.urihttp://dora.health.qld.gov.au/qldresearchjspui/handle/1/3675-
dc.description.abstractBackground: Oxford Nanopore Technology (ONT) long-read sequencing has become a popular platform for microbial researchers due to the accessibility and affordability of its devices. However, easy and automated construction of high-quality bacterial genomes using nanopore reads remains challenging. Here we aimed to create a reproducible end-to-end bacterial genome assembly pipeline using ONT in combination with Illumina sequencing.; Results: We evaluated the performance of several popular tools used during genome reconstruction, including base-calling, filtering, assembly, and polishing. We also assessed overall genome accuracy using ONT both natively and with Illumina. All steps were validated using the high-quality complete reference genome for the Escherichia coli sequence type (ST)131 strain EC958. Software chosen at each stage were incorporated into our final pipeline, MicroPIPE. Further validation of MicroPIPE was carried out using 11 additional ST131 E. coli isolates, which demonstrated that complete circularised chromosomes and plasmids could be achieved without manual intervention. Twelve publicly available Gram-negative and Gram-positive bacterial genomes (with available raw ONT data and matched complete genomes) were also assembled using MicroPIPE. We found that revised basecalling and updated assembly of the majority of these genomes resulted in improved accuracy compared to the current publicly available complete genomes.; Conclusions: MicroPIPE is built in modules using Singularity container images and the bioinformatics workflow manager Nextflow, allowing changes and adjustments to be made in response to future tool development. Overall, MicroPIPE provides an easy-access, end-to-end solution for attaining high-quality bacterial genomes. MicroPIPE is available at https://github.com/BeatsonLab-MicrobialGenomics/micropipe .PLoS Comput Biol. 2017 Jun 8;13(6):e1005595. (PMID: 28594827); Microbiol Resour Announc. 2020 Oct 8;9(41):. (PMID: 33033131); PLoS Comput Biol. 2018 Nov 20;14(11):e1006583. (PMID: 30458005); Front Microbiol. 2019 Sep 04;10:2068. (PMID: 31551994); Open Forum Infect Dis. 2017 May 02;4(2):ofx089. (PMID: 28638846); BMC Genomics. 2012 Jan 10;13:14. (PMID: 22233127); Genome Biol. 2018 Jul 13;19(1):90. (PMID: 30005597); Microbiol Resour Announc. 2018 Nov 1;7(17):. (PMID: 30533757); Sci Rep. 2019 Nov 8;9(1):16350. (PMID: 31704961); Gigascience. 2019 May 1;8(5):. (PMID: 31089679); Microbiol Resour Announc. 2018 Sep 13;7(10):. (PMID: 30533626); Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404); Microb Genom. 2019 Nov;5(11):. (PMID: 31697231); PLoS Comput Biol. 2020 Mar 5;16(3):e1007134. (PMID: 32134915); Curr Protoc Bioinformatics. 2002 Nov;Chapter 2:Unit 2.4. (PMID: 18792935); Genome Biol. 2020 Feb 7;21(1):30. (PMID: 32033565); F1000Res. 2019 Dec 23;8:2138. (PMID: 31984131); Front Genet. 2020 Aug 12;11:900. (PMID: 32903372); J Clin Microbiol. 2017 Dec;55(12):3530-3543. (PMID: 29021151); Genome Res. 2017 May;27(5):737-746. (PMID: 28100585); PLoS One. 2017 May 11;12(5):e0177459. (PMID: 28494014); Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36. (PMID: 7584402); mBio. 2016 Apr 26;7(2):e00347-16. (PMID: 27118589); Nat Biotechnol. 2019 May;37(5):540-546. (PMID: 30936562); Genome Biol. 2014;15(11):524. (PMID: 25410596); Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259. (PMID: 30931475); Nat Biotechnol. 2019 Oct;37(10):1155-1162. (PMID: 31406327); Genome Res. 2017 May;27(5):722-736. (PMID: 28298431); Bioinformatics. 2020 Apr 1;36(7):2253-2255. (PMID: 31778144); Nat Biotechnol. 2020 Sep;38(9):1044-1053. (PMID: 32686750); Curr Opin Microbiol. 2015 Feb;23:110-20. (PMID: 25461581); Microbiol Resour Announc. 2020 Mar 26;9(13):. (PMID: 32217674); Bioinformatics. 2018 Aug 1;34(15):2666-2669. (PMID: 29547981); Genome Biol. 2019 Feb 4;20(1):26. (PMID: 30717772); J Comput Biol. 2012 May;19(5):455-77. (PMID: 22506599); mSystems. 2020 Aug 4;5(4):. (PMID: 32753501); Microb Genom. 2017 Sep 14;3(10):e000132. (PMID: 29177090); Nat Biotechnol. 2017 Apr 11;35(4):316-319. (PMID: 28398311); Nat Methods. 2020 Feb;17(2):155-158. (PMID: 31819265); Clin Infect Dis. 2019 Sep 13;69(7):1232-1234. (PMID: 30721938); Bioinformatics. 2013 Apr 15;29(8):1072-5. (PMID: 23422339); J Antimicrob Chemother. 2014 Oct;69(10):2658-68. (PMID: 24920651); Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5694-9. (PMID: 24706808); PLoS Comput Biol. 2018 Jan 26;14(1):e1005944. (PMID: 29373581); Genetics. 2006 Apr;172(4):2665-81. (PMID: 16489234); F1000Res. 2017 Feb 3;6:100. (PMID: 28868132); Nat Biotechnol. 2018 Apr;36(4):338-345. (PMID: 29431738); Genome Biol. 2019 Jun 24;20(1):129. (PMID: 31234903); PLoS One. 2014 Nov 19;9(11):e112963. (PMID: 25409509); Nat Methods. 2015 Aug;12(8):733-5. (PMID: 26076426); Sci Data. 2019 Nov 26;6(1):285. (PMID: 31772173); Bioinformatics. 2018 Sep 15;34(18):3094-3100. (PMID: 29750242); Genome Res. 2017 May;27(5):787-792. (PMID: 28130360); Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278). Linking ISSN: 14712164. Subset: MEDLINE; Date of Electronic Publication: 2021 Jun 25. ; Original Imprints: Publication: London : BioMed Central, [2000- <br />en
dc.language.isoenen
dc.relation.ispartofBMC genomicsen
dc.titleMicroPIPE: validating an end-to-end workflow for high-quality complete bacterial genome constructionen
dc.typeArticleen
dc.identifier.doi10.1186/s12864-021-07767-zen
dc.subject.keywordsPipelineen
dc.subject.keywordsPolishingen
dc.subject.keywordsSequenceen
dc.subject.keywordsBacteriaen
dc.subject.keywordsAssemblyen
dc.subject.keywordsNanoporeen
dc.subject.keywordsWorkflowen
dc.subject.keywordsONTen
dc.subject.keywordsHigh-Throughput Nucleotide Sequencingen
dc.subject.keywordsComputational Biologyen
dc.subject.keywordsEscherichia coli*Genome, Bacterial*en
dc.subject.keywordsSequence Analysis, DNAen
dc.relation.urlhttps://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,athens&db=mdc&AN=34172000&site=ehost-liveen
dc.identifier.risid3515en
dc.description.pages474en
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Sites:Children's Health Queensland Publications
Queensland Health Publications
Show simple item record

Page view(s)

102
checked on May 8, 2025

Google ScholarTM

Check

Altmetric


Items in DORA are protected by copyright, with all rights reserved, unless otherwise indicated.