Please use this identifier to cite or link to this item:
https://dora.health.qld.gov.au/qldresearchjspui/handle/1/4758
Title: | T-Cell Expression and Release of Kidney Injury Molecule-1 in Response to Glucose Variations Initiates Kidney Injury in Early Diabetes | Authors: | Couper, J. Teasdale, S. Russell, A. Isbel, N. Jones, T. Healy, H. O'Moore-Sullivan, T. Barrett, H. L. Cotterill, A. Johnson, D. W. Donaghue, K. Harris, M. Forbes, J. M. McCarthy, D. A. Kassianos, A. J. Baskerville, T. Fotheringham, A. K. Giuliani, K. T. K. Grivei, A. Murphy, A. J. Flynn, M. C. Sullivan, M. A. Chandrashekar, P. Whiddett, R. Radford, K. J. Flemming, N. Beard, S. S. D'Silva, N. Nisbet, J. Morton, A. |
Issue Date: | 2021 | Source: | 70, (8), 2021, p. 1754-1766 | Pages: | 1754-1766 | Journal: | Diabetes | Abstract: | Half of the mortality in diabetes is seen in individuals <50 years of age and commonly predicted by the early onset of diabetic kidney disease (DKD). In type 1 diabetes, increased urinary albumin-to-creatinine ratio (uACR) during adolescence defines this risk, but the pathological factors responsible remain unknown. We postulated that early in diabetes, glucose variations contribute to kidney injury molecule-1 (KIM-1) release from circulating T cells, elevating uACR and DKD risk. DKD risk was assigned in youth with type 1 diabetes (n = 100; 20.0 ± 2.8 years; males/females, 54:46; HbA1c 66.1 [12.3] mmol/mol; diabetes duration 10.7 ± 5.2 years; and BMI 24.5 [5.3] kg/m2) and 10-year historical uACR, HbA1c, and random blood glucose concentrations collected retrospectively. Glucose fluctuations in the absence of diabetes were also compared with streptozotocin diabetes in apolipoprotein E-/- mice. Kidney biopsies were used to examine infiltration of KIM-1-expressing T cells in DKD and compared with other chronic kidney disease. Individuals at high risk for DKD had persistent elevations in uACR defined by area under the curve (AUC; uACRAUC0-10yrs, 29.7 ± 8.8 vs. 4.5 ± 0.5; P < 0.01 vs. low risk) and early kidney dysfunction, including ∼8.3 mL/min/1.73 m2 higher estimated glomerular filtration rates (modified Schwartz equation; Padj < 0.031 vs. low risk) and plasma KIM-1 concentrations (∼15% higher vs. low risk; P < 0.034). High-risk individuals had greater glycemic variability and increased peripheral blood T-cell KIM-1 expression, particularly on CD8+ T cells. These findings were confirmed in a murine model of glycemic variability both in the presence and absence of diabetes. KIM-1+ T cells were also infiltrating kidney biopsies from individuals with DKD. Healthy primary human proximal tubule epithelial cells exposed to plasma from high-risk youth with diabetes showed elevated collagen IV and sodium-glucose cotransporter 2 expression, alleviated with KIM-1 blockade. Taken together, these studies suggest that glycemic variations confer risk for DKD in diabetes via increased CD8+ T-cell production of KIM-1.L6356639632021-08-12 | DOI: | 10.2337/db20-1081 | Resources: | https://www.embase.com/search/results?subaction=viewrecord&id=L635663963&from=exporthttp://dx.doi.org/10.2337/db20-1081 | | Keywords: | adolescent;adult;blood;diabetic nephropathy;female;glomerulus filtration rate;glucose blood level;human;insulin dependent diabetes mellitus;kidney;kidney function test;male;metabolism;pathology;pathophysiology;physiology;retrospective study;young adult;HAVCR1 protein, humanhepatitis A virus cellular receptor 1 | Type: | Article |
Appears in Sites: | Children's Health Queensland Publications |
Show full item record
Items in DORA are protected by copyright, with all rights reserved, unless otherwise indicated.