Please use this identifier to cite or link to this item:
Title: Repetitive mild traumatic brain injury affects inflammation and excitotoxic mRNA expression at acute and chronic time-points
Authors: Hiskens, Matthew I
Schneiders, Anthony G
Vella, Rebecca K
Fenning, Andrew S
Issue Date: May-2021
Publisher: Public Library of Science
Journal: PloS one
Abstract: The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurological damage, however the molecular mechanisms underpinning this detriment require further investigation. A closed head weight drop model that replicates the biomechanics and head acceleration forces of human mTBI was used to provide an exploration of the acute and chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were randomly assigned into one of four impact groups (control; one, five and 15 impacts) which were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired performance in the 15-impact group compared with control in the acute phase that persisted at chronic measurement. mRNA analyses were performed on brain tissue samples of the cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes observed based on location and follow-up duration. The cortex and hippocampus showed vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes. Serum samples showed no difference between groups for proteins phosphorylated tau and GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce mTBI pathophysiology and clinical features. The genes investigated in this study provide opportunity for further investigation of mTBI-related neuropathology and may provide targets in the development of therapies that help mitigate the effects of mTBI.
Description: Data Availability Statement: The data is uploaded in the Mendeley Data Repository and can be accessed from [].
DOI: 10.1371/journal.pone.0251315
Type: Article
Appears in Sites:Publications

Files in This Item:
2 files
File Description SizeFormat 
Hiskens et al 1.pdf1.03 MBAdobe PDF
Download Adobe

Page view(s)

checked on Jul 27, 2021


checked on Jul 27, 2021

Google ScholarTM


Items in DORA are protected by copyright, with all rights reserved, unless otherwise indicated.